Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Proteomic profiling of the monothiol glutaredoxin Grx3 reveals its global role in the regulation of iron dependent processes.

Identifieur interne : 000031 ( Main/Exploration ); précédent : 000030; suivant : 000032

Proteomic profiling of the monothiol glutaredoxin Grx3 reveals its global role in the regulation of iron dependent processes.

Auteurs : Selma S. Alkafeef [États-Unis, Koweït] ; Shelley Lane [États-Unis] ; Clinton Yu [États-Unis] ; Tingting Zhou [États-Unis] ; Norma V. Solis [États-Unis] ; Scott G. Filler [États-Unis] ; Lan Huang [États-Unis] ; Haoping Liu [États-Unis]

Source :

RBID : pubmed:32525871

Descripteurs français

English descriptors

Abstract

Iron is an essential nutrient required as a cofactor for many biological processes. As a fungal commensal-pathogen of humans, Candida albicans encounters a range of bioavailable iron levels in the human host and maintains homeostasis with a conserved regulatory circuit. How C. albicans senses and responds to iron availability is unknown. In model yeasts, regulation of the iron homeostasis circuit requires monothiol glutaredoxins (Grxs), but their functions beyond the regulatory circuit are unclear. Here, we show Grx3 is required for virulence and growth on low iron for C. albicans. To explore the global roles of Grx3, we applied a proteomic approach and performed in vivo cross-linked tandem affinity purification coupled with mass spectrometry. We identified a large number of Grx3 interacting proteins that function in diverse biological processes. This included Fra1 and Bol2/Fra2, which function with Grxs in intracellular iron trafficking in other organisms. Grx3 interacts with and regulates the activity of Sfu1 and Hap43, components of the C. albicans iron regulatory circuit. Unlike the regulatory circuit, which determines expression or repression of target genes in response to iron availability, Grx3 amplifies levels of gene expression or repression. Consistent with the proteomic data, the grx3 mutant is sensitive to heat shock, oxidative, nitrosative, and genotoxic stresses, and shows growth dependence on histidine, leucine, and tryptophan. We suggest Grx3 is a conserved global regulator of iron-dependent processes occurring within the cell.

DOI: 10.1371/journal.pgen.1008881
PubMed: 32525871
PubMed Central: PMC7319344


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Proteomic profiling of the monothiol glutaredoxin Grx3 reveals its global role in the regulation of iron dependent processes.</title>
<author>
<name sortKey="Alkafeef, Selma S" sort="Alkafeef, Selma S" uniqKey="Alkafeef S" first="Selma S" last="Alkafeef">Selma S. Alkafeef</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Chemistry, University of California, Irvine, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Chemistry, University of California, Irvine, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait.</nlm:affiliation>
<country xml:lang="fr">Koweït</country>
<wicri:regionArea>Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait City</wicri:regionArea>
<wicri:noRegion>Kuwait City</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lane, Shelley" sort="Lane, Shelley" uniqKey="Lane S" first="Shelley" last="Lane">Shelley Lane</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Chemistry, University of California, Irvine, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Chemistry, University of California, Irvine, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yu, Clinton" sort="Yu, Clinton" uniqKey="Yu C" first="Clinton" last="Yu">Clinton Yu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Physiology & Biophysics, University of California, Irvine, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Physiology & Biophysics, University of California, Irvine, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Tingting" sort="Zhou, Tingting" uniqKey="Zhou T" first="Tingting" last="Zhou">Tingting Zhou</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Chemistry, University of California, Irvine, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Chemistry, University of California, Irvine, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Solis, Norma V" sort="Solis, Norma V" uniqKey="Solis N" first="Norma V" last="Solis">Norma V. Solis</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Filler, Scott G" sort="Filler, Scott G" uniqKey="Filler S" first="Scott G" last="Filler">Scott G. Filler</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>David Geffen School of Medicine at UCLA, Los Angeles, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Huang, Lan" sort="Huang, Lan" uniqKey="Huang L" first="Lan" last="Huang">Lan Huang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Physiology & Biophysics, University of California, Irvine, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Physiology & Biophysics, University of California, Irvine, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Liu, Haoping" sort="Liu, Haoping" uniqKey="Liu H" first="Haoping" last="Liu">Haoping Liu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Chemistry, University of California, Irvine, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Chemistry, University of California, Irvine, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32525871</idno>
<idno type="pmid">32525871</idno>
<idno type="doi">10.1371/journal.pgen.1008881</idno>
<idno type="pmc">PMC7319344</idno>
<idno type="wicri:Area/Main/Corpus">000046</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000046</idno>
<idno type="wicri:Area/Main/Curation">000046</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000046</idno>
<idno type="wicri:Area/Main/Exploration">000046</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Proteomic profiling of the monothiol glutaredoxin Grx3 reveals its global role in the regulation of iron dependent processes.</title>
<author>
<name sortKey="Alkafeef, Selma S" sort="Alkafeef, Selma S" uniqKey="Alkafeef S" first="Selma S" last="Alkafeef">Selma S. Alkafeef</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Chemistry, University of California, Irvine, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Chemistry, University of California, Irvine, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait.</nlm:affiliation>
<country xml:lang="fr">Koweït</country>
<wicri:regionArea>Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait City</wicri:regionArea>
<wicri:noRegion>Kuwait City</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lane, Shelley" sort="Lane, Shelley" uniqKey="Lane S" first="Shelley" last="Lane">Shelley Lane</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Chemistry, University of California, Irvine, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Chemistry, University of California, Irvine, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yu, Clinton" sort="Yu, Clinton" uniqKey="Yu C" first="Clinton" last="Yu">Clinton Yu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Physiology & Biophysics, University of California, Irvine, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Physiology & Biophysics, University of California, Irvine, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Tingting" sort="Zhou, Tingting" uniqKey="Zhou T" first="Tingting" last="Zhou">Tingting Zhou</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Chemistry, University of California, Irvine, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Chemistry, University of California, Irvine, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Solis, Norma V" sort="Solis, Norma V" uniqKey="Solis N" first="Norma V" last="Solis">Norma V. Solis</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Filler, Scott G" sort="Filler, Scott G" uniqKey="Filler S" first="Scott G" last="Filler">Scott G. Filler</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>David Geffen School of Medicine at UCLA, Los Angeles, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Huang, Lan" sort="Huang, Lan" uniqKey="Huang L" first="Lan" last="Huang">Lan Huang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Physiology & Biophysics, University of California, Irvine, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Physiology & Biophysics, University of California, Irvine, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Liu, Haoping" sort="Liu, Haoping" uniqKey="Liu H" first="Haoping" last="Liu">Haoping Liu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Chemistry, University of California, Irvine, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Chemistry, University of California, Irvine, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS genetics</title>
<idno type="eISSN">1553-7404</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Candida albicans (pathogenicity)</term>
<term>Candida albicans (physiology)</term>
<term>Candidiasis, Invasive (microbiology)</term>
<term>Disease Models, Animal (MeSH)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungal Proteins (isolation & purification)</term>
<term>Fungal Proteins (metabolism)</term>
<term>GATA Transcription Factors (metabolism)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (isolation & purification)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Homeostasis (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Hyphae (MeSH)</term>
<term>Iron (metabolism)</term>
<term>Male (MeSH)</term>
<term>Mice (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Protein Interaction Mapping (MeSH)</term>
<term>Protein Interaction Maps (genetics)</term>
<term>Proteomics (MeSH)</term>
<term>Virulence (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Candida albicans (pathogénicité)</term>
<term>Candida albicans (physiologie)</term>
<term>Candidose invasive (microbiologie)</term>
<term>Cartes d'interactions protéiques (génétique)</term>
<term>Cartographie d'interactions entre protéines (MeSH)</term>
<term>Facteurs de transcription GATA (métabolisme)</term>
<term>Fer (métabolisme)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (isolement et purification)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Homéostasie (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Hyphae (MeSH)</term>
<term>Modèles animaux de maladie humaine (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Mâle (MeSH)</term>
<term>Protéines fongiques (génétique)</term>
<term>Protéines fongiques (isolement et purification)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Protéomique (MeSH)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Souris (MeSH)</term>
<term>Virulence (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Fungal Proteins</term>
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>Fungal Proteins</term>
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Fungal Proteins</term>
<term>GATA Transcription Factors</term>
<term>Glutaredoxins</term>
<term>Iron</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Protein Interaction Maps</term>
<term>Virulence</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Cartes d'interactions protéiques</term>
<term>Glutarédoxines</term>
<term>Protéines fongiques</term>
<term>Virulence</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Candidose invasive</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Candidiasis, Invasive</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteurs de transcription GATA</term>
<term>Fer</term>
<term>Glutarédoxines</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Candida albicans</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Candida albicans</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Candida albicans</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Candida albicans</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Disease Models, Animal</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Homeostasis</term>
<term>Humans</term>
<term>Hyphae</term>
<term>Male</term>
<term>Mice</term>
<term>Mutation</term>
<term>Protein Interaction Mapping</term>
<term>Proteomics</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cartographie d'interactions entre protéines</term>
<term>Homéostasie</term>
<term>Humains</term>
<term>Hyphae</term>
<term>Modèles animaux de maladie humaine</term>
<term>Mutation</term>
<term>Mâle</term>
<term>Protéomique</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Souris</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Iron is an essential nutrient required as a cofactor for many biological processes. As a fungal commensal-pathogen of humans, Candida albicans encounters a range of bioavailable iron levels in the human host and maintains homeostasis with a conserved regulatory circuit. How C. albicans senses and responds to iron availability is unknown. In model yeasts, regulation of the iron homeostasis circuit requires monothiol glutaredoxins (Grxs), but their functions beyond the regulatory circuit are unclear. Here, we show Grx3 is required for virulence and growth on low iron for C. albicans. To explore the global roles of Grx3, we applied a proteomic approach and performed in vivo cross-linked tandem affinity purification coupled with mass spectrometry. We identified a large number of Grx3 interacting proteins that function in diverse biological processes. This included Fra1 and Bol2/Fra2, which function with Grxs in intracellular iron trafficking in other organisms. Grx3 interacts with and regulates the activity of Sfu1 and Hap43, components of the C. albicans iron regulatory circuit. Unlike the regulatory circuit, which determines expression or repression of target genes in response to iron availability, Grx3 amplifies levels of gene expression or repression. Consistent with the proteomic data, the grx3 mutant is sensitive to heat shock, oxidative, nitrosative, and genotoxic stresses, and shows growth dependence on histidine, leucine, and tryptophan. We suggest Grx3 is a conserved global regulator of iron-dependent processes occurring within the cell.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32525871</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>08</Month>
<Day>31</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1553-7404</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>16</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2020</Year>
<Month>06</Month>
</PubDate>
</JournalIssue>
<Title>PLoS genetics</Title>
<ISOAbbreviation>PLoS Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>Proteomic profiling of the monothiol glutaredoxin Grx3 reveals its global role in the regulation of iron dependent processes.</ArticleTitle>
<Pagination>
<MedlinePgn>e1008881</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pgen.1008881</ELocationID>
<Abstract>
<AbstractText>Iron is an essential nutrient required as a cofactor for many biological processes. As a fungal commensal-pathogen of humans, Candida albicans encounters a range of bioavailable iron levels in the human host and maintains homeostasis with a conserved regulatory circuit. How C. albicans senses and responds to iron availability is unknown. In model yeasts, regulation of the iron homeostasis circuit requires monothiol glutaredoxins (Grxs), but their functions beyond the regulatory circuit are unclear. Here, we show Grx3 is required for virulence and growth on low iron for C. albicans. To explore the global roles of Grx3, we applied a proteomic approach and performed in vivo cross-linked tandem affinity purification coupled with mass spectrometry. We identified a large number of Grx3 interacting proteins that function in diverse biological processes. This included Fra1 and Bol2/Fra2, which function with Grxs in intracellular iron trafficking in other organisms. Grx3 interacts with and regulates the activity of Sfu1 and Hap43, components of the C. albicans iron regulatory circuit. Unlike the regulatory circuit, which determines expression or repression of target genes in response to iron availability, Grx3 amplifies levels of gene expression or repression. Consistent with the proteomic data, the grx3 mutant is sensitive to heat shock, oxidative, nitrosative, and genotoxic stresses, and shows growth dependence on histidine, leucine, and tryptophan. We suggest Grx3 is a conserved global regulator of iron-dependent processes occurring within the cell.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Alkafeef</LastName>
<ForeName>Selma S</ForeName>
<Initials>SS</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Chemistry, University of California, Irvine, California, United States of America.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lane</LastName>
<ForeName>Shelley</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">0000-0003-2325-7207</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biological Chemistry, University of California, Irvine, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Clinton</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">0000-0002-2931-5474</Identifier>
<AffiliationInfo>
<Affiliation>Department of Physiology & Biophysics, University of California, Irvine, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Tingting</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Chemistry, University of California, Irvine, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Solis</LastName>
<ForeName>Norma V</ForeName>
<Initials>NV</Initials>
<AffiliationInfo>
<Affiliation>Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Filler</LastName>
<ForeName>Scott G</ForeName>
<Initials>SG</Initials>
<Identifier Source="ORCID">0000-0001-7278-3700</Identifier>
<AffiliationInfo>
<Affiliation>Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Lan</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">0000-0002-3140-4687</Identifier>
<AffiliationInfo>
<Affiliation>Department of Physiology & Biophysics, University of California, Irvine, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Haoping</ForeName>
<Initials>H</Initials>
<Identifier Source="ORCID">0000-0003-3489-7103</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biological Chemistry, University of California, Irvine, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI124566</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI099190</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM074830</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 DE026600</GrantID>
<Acronym>DE</Acronym>
<Agency>NIDCR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM130144</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 DE017088</GrantID>
<Acronym>DE</Acronym>
<Agency>NIDCR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM117111</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>06</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Genet</MedlineTA>
<NlmUniqueID>101239074</NlmUniqueID>
<ISSNLinking>1553-7390</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050980">GATA Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002176" MajorTopicYN="N">Candida albicans</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058365" MajorTopicYN="N">Candidiasis, Invasive</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004195" MajorTopicYN="N">Disease Models, Animal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050980" MajorTopicYN="N">GATA Transcription Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006706" MajorTopicYN="N">Homeostasis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025301" MajorTopicYN="N">Hyphae</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025941" MajorTopicYN="N">Protein Interaction Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060066" MajorTopicYN="N">Protein Interaction Maps</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040901" MajorTopicYN="N">Proteomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014774" MajorTopicYN="N">Virulence</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>10</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>05</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>06</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32525871</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pgen.1008881</ArticleId>
<ArticleId IdType="pii">PGENETICS-D-19-01705</ArticleId>
<ArticleId IdType="pmc">PMC7319344</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2012 Jun 5;51(22):4377-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22583368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jan 4;45(D1):D183-D189</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27899595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Jun 21;277(25):22950-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11956219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2009 Oct;9(7):1000-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19788558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2008 Dec;26(12):1367-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19029910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2019 Jan 8;47(D1):D821-D827</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30321395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2011 Feb;10(2):207-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21131439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2009;563:123-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19597783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2006 Nov 1;119(Pt 21):4554-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17074835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2014 Sep;13(9):2513-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24942700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jul 24;284(30):20249-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19502236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2011 Aug 18;10(2):118-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21843869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 4;283(14):8868-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18216016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2011 May 20;408(4):609-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21531205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2006 Nov;4(12):e410</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17121456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2010 Oct 6;12(4):373-385</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20889129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2018 Dec 4;9(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30514787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 18;283(16):10276-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18281282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Oct 13;48(40):9569-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19715344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2004 Aug;53(4):1209-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15306022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2017 Aug 4;292(31):12754-12763</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28615445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2016 Aug 17;5:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27532772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Jun;1853(6):1528-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25583461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2010 May;47(5):433-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20206282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jun 30;281(26):17661-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16648636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Jul 8;47(27):7274-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18549241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1999 Oct;181(20):6339-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10515923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jan 1;34(Database issue):D535-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16381927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2018 Jan 16;14(1):e1007176</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29337983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2013 Aug;8(8):1551-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23868073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Jul 13;337(6091):243-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22678361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2006 Nov;5(11):1866-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16963626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Mol Res. 2007 Oct 05;6(4):1051-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18273798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Nov 24;6(11):e1001209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21124817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jun 04;9(6):e98959</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24897379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2012 May;11(5):138-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22474085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2015 Nov;14(11):1114-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26342020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 Dec;5(12):e1000783</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20041210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 Sep 5;90(5):939-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9298905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2011 Jul;9(7):e1001105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21811397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2010 Mar;9(3):460-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20008079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jan 4;45(D1):D592-D596</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27738138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D700-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22110037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2012 Dec;32(24):4998-5008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23045394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2013 Aug;10(8):730-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23921808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Jul 15;286(28):25154-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21592964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2012 Jun;11(6):806-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22523368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Jun 26;137(7):1247-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19563757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2004 Sep;53(5):1451-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15387822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012;8(11):e1002956</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23133381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2012 Mar;11(3):M111.014068</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22301388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Oct;50(1):167-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14507372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2012 Jan;11(1):16-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22117028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Jul 13;337(6091):195-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22678362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2016 Oct 18;7(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27795405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Jul;7(7):1168-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18503007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2007 May;75(5):2143-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17339352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2019 Jan 8;47(D1):D419-D426</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30407594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2011 May;10(5):629-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21421748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2013 Dec;16(6):708-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24121029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2006 Apr;5(4):737-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16432255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2008 Sep;28(18):5569-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18625724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2015 Mar 25;11(3):e1005106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25806539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metallomics. 2017 Aug 16;9(8):1096-1105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28725905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):4043-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24591629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2016 Oct 21;291(43):22344-22356</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27519415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2006 Feb;5(2):366-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16284124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2000 Mar;35(5):1264-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10712706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Future Microbiol. 2017 Nov;12:1397-1412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29039220</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Koweït</li>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Alkafeef, Selma S" sort="Alkafeef, Selma S" uniqKey="Alkafeef S" first="Selma S" last="Alkafeef">Selma S. Alkafeef</name>
</region>
<name sortKey="Filler, Scott G" sort="Filler, Scott G" uniqKey="Filler S" first="Scott G" last="Filler">Scott G. Filler</name>
<name sortKey="Filler, Scott G" sort="Filler, Scott G" uniqKey="Filler S" first="Scott G" last="Filler">Scott G. Filler</name>
<name sortKey="Huang, Lan" sort="Huang, Lan" uniqKey="Huang L" first="Lan" last="Huang">Lan Huang</name>
<name sortKey="Lane, Shelley" sort="Lane, Shelley" uniqKey="Lane S" first="Shelley" last="Lane">Shelley Lane</name>
<name sortKey="Liu, Haoping" sort="Liu, Haoping" uniqKey="Liu H" first="Haoping" last="Liu">Haoping Liu</name>
<name sortKey="Solis, Norma V" sort="Solis, Norma V" uniqKey="Solis N" first="Norma V" last="Solis">Norma V. Solis</name>
<name sortKey="Yu, Clinton" sort="Yu, Clinton" uniqKey="Yu C" first="Clinton" last="Yu">Clinton Yu</name>
<name sortKey="Zhou, Tingting" sort="Zhou, Tingting" uniqKey="Zhou T" first="Tingting" last="Zhou">Tingting Zhou</name>
</country>
<country name="Koweït">
<noRegion>
<name sortKey="Alkafeef, Selma S" sort="Alkafeef, Selma S" uniqKey="Alkafeef S" first="Selma S" last="Alkafeef">Selma S. Alkafeef</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000031 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000031 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32525871
   |texte=   Proteomic profiling of the monothiol glutaredoxin Grx3 reveals its global role in the regulation of iron dependent processes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32525871" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020